

Charotar University of Science and Technology, Gujarat B.E./B.Tech ECE Sem 1 syllabus

Computer Concepts & Programming

COMPUTER CONCEPTS & PROGRAMMING

1. Introduction to 'C' language

1.1 Program, Software, Instruction, debugging, compilation and execution of C Program, Difference between Header files & library files, Compiler and Interpreter, Procedure Oriented Language, Importance of C, Basic structure of C.

2. Constants, Variables & Data Types in 'C'

- 2.1 Character set, C tokens, Keywords & Identifiers, Data types, Constants,
- 2.2 Variables, Declaration of Variables, Assigning Values to Variables, Declaring a variable as Constant, Defining Symbolic constants

3. Operators and Expression in 'C'

- 3.1 Classification of operators: Arithmetic, Relational, Logical, Assignment, Increment / Decrement, Conditional, Bitwise, Special Operators. Unary, Binary and Ternary Operators.
- 3.2 Arithmetic expression, Evaluation, Type conversion: Implicit & Explicit, Precedence and

Associativity, Various library functions from maths.h

4. Managing Input & Output Operations

- 4.1 Reading a Character, Writing a Character, Various library functions from ctype.h
- 4.2 Formatted Input, Formatted Output

5. Decision Making & Branching

- 5.1 Decision making using simple if, if...else statement, nesting of if...else, else...if Ladder.
- 5.2 Switch statements, conditional operator, goto statement.

6. Looping

- 6.1 Need of looping, (pre-test) entry-controlled loop: while, for, (post-test) exit-controlled loop: do...while, difference, between Counter-Controlled loops and Sentinel controlled loops
- 6.2 Nesting of looping statements, use of break & continue, use of if...else in loop, infinite loop.

7. Arrays

- 7.1 Need of array, Declaration & Initialization 1D array, Programs of 1D.
- 7.2 2D array, Memory allocation of 1D and 2D array, 2D array basic programs.

8. Character Arrays and Strings

- 8.1 Difference of character array with numeric array and importance of NULL character.
- 8.2 Declaration, Initialization and various input and output methods of string, formatted output of string, arithmetic operations on characters.
- 8.3 Various functions of string.h: strlen, strcat, strcmp, strcpy, strrev, strstr, etc.
- 8.4 Two dimensional character array (table of strings).

9.User-Defined Function in 'C'

- 9.1 Need of modularization, advantages, Introduction to user-defined function, Function Prototype, Function Call, Function Body.
- 9.2 Call by value, Actual &Formal Arguments, return value, Categories of functions, Nesting of Functions, Recursion.
- 9.3 Array as Function arguments, Storage Classes: Scope, Life of a variable in 'C'.

10.Structures and Union

- 10.1 Need of user-defined data type, Structure definition, Declaration and Initialization of variables, Array as member, Array of structure variables.
- 10.2 Structure within structure, Structure as function arguments, Union

11.Pointers

- 11.1 Introduction to pointer, declaration & initialization, access value using pointer, indirection (*) operator.
- 11.2 Pointers in expressions, scale factor, 1D-array and pointer,

pointer with strings, Array of pointers.

11.3 Pointer as arguments in function, Call by address, Functions returning pointers, Pointers and structures, Chain of Pointers

12.File Management in 'C'

- 12.1 Introduction, Defining and Opening a file, closing a file, modes of file, read & write single character and integer to file, use of fprintf and fscanf functions.
- 12.2 Error handling functions, random access of files using ftell, rewind, fseek, command line argument.

13. Dynamic Memory Allocation

- 13.1 Introduction, memory allocation process
- 13.2 Use of functions: malloc (), calloc (), realloc () and free ().

Basics of Electronics & Electrical Engineering

BASICS OF ELECTRONICS & ELECTRICAL ENGINEERING

1 Basic Electrical Terms and Units

1.1 Ohm"s law, resistor and its coding, properties, temperature coefficient of resistance, resistance variation with temperature, examples

2 Electrical Circuit Analysis

- 2.1 Kirchoff's current and voltage law, mesh and nodal analysis, Examples
- 2.2 Series parallel circuits, star-delta transformation

3 Electrostatic

- 3.1 Capacitors, charge and voltage, capacitance, electric fields, electric field strength and electric flux density, relative permittivity, dielectric strength, Examples
- 3.2 Capacitors in parallel and series, Calculation of capacitance of parallel plate and multi plate capacitor, examples.

4 Electromagnetism

- 4.1 Magnetic field, its direction and characteristics, magnetic flux and flux density, magneto motive force and magnetic field strength, examples
- 4.2 Faraday's law of electromagnetic induction, Fleming's left hand and right hand rule, Lenz law, force on a current carrying conductor,

examples

4.3 Self and mutual inductance

5 AC Fundamentals

- 5.1 AC Waveform and definition of its terms, relation between speed and frequency
- 5.2 Average and RMS value and its determination for sinusoidal wave shapes, examples

6 Single Phase AC Series Circuits

- 6.1 R-L and R-C series circuit, power in ac circuits, examples
- 6.2 R-L-C series circuit, resonance in R-L-C series circuit, relevant examples

7 Polyphase Circuits

7.1 Phase sequence, voltage and current relations in star and delta connected system

8 Basics of Electronics

- 8.1 Electronic Systems: Basic amplifier, voltage, current and power gain, Basic attenuators, CRO
- 8.2 Transmission and Signals: Analog and digital signals, bandwidth,
- 8.3 Forward and reverse bias of PN junction diode, zener diode
- 8.4 Rectifiers: Half Wave, Full Wave Centre Tap, Bridge
- 8.4 Transistor: Bipolar junction transistor, construction and biasing, configuration

Visit www.goseeko.com to access free study material as per your university syllabus