

SPPU B.E./B.Tech IT Sem 4 syllabus

Database Management System

Database Management System

Introduction to DBMS

Introduction: Basic concepts, Advantages of DBMS over file processing systems, Data abstraction,

Database languages, Data models, Data independence, Components of a DBMS, Overall structure of

DBMS, Multi-user DBMS architecture, System catalogs, Data Modeling: Basic concepts, Entity, attributes, relationships, constraints, keys.

Relational Model

ER and EER diagrams: Components of ER model, Conventions, Converting ER diagrams into tables Relational Model: Basic concepts, Attributes and Domains, Codd's

rules.

Relational Integrity: Nulls, Entity, Referential integrities, Enterprise constraints, Views, Schema diagram

Introduction to SQL - PL/SQL

Introduction to SQL: Characteristics and advantages SQL Data Types, Literals, DDL, DML, SQL

Operators Tables: Creating, Modifying, Deleting, Views: Creating, Dropping, Updation using Views,

Indexes, Nulls.

SQL DML Queries: SELECT query and clauses, Set operations, Tuple Variables, Set comparison,

Ordering of Tuples, Aggregate Functions, Nested Queries, Database

Modification using SQL Insert, Update, Delete Queries, Stored Procedure, Triggers, Programmatic SQL: Embedded SQL, Dynamic

Database Design & Query Processing

Relational Databases Design: Purpose of Normalization, Data Redundancy and Update Anomalies,

Functional Dependencies. The process of Normalization: 1NF, 2NF, 3NF, BCNF. Introduction to

Query Processing: Overview, Measures of Query cost, Selection and Join operations, Evaluation of

Expressions

SQL, ODBC

Introduction to Query optimization: Estimation, Transformation of Relational Expression

Transaction & Concurrency Control

Transaction Management: Basic concept of a Transaction, Properties of Transactions, Database

Architecture, Concept of Schedule, Serial Schedule.

Serializability: Conflict and View, Cascaded aborts Recoverable and Non-recoverable Schedules.

Concurrency Control: Need Locking methods Dead locks, Time stamping Methods. Optimistic

Techniques, Multi-version Concurrency Control.

Different crash recovery methods: Shadow-Paging, Log-based

Recovery: Deferred and Immediate,

Check Points

Advanced Databases

Database Architectures: Centralized and Client-Server Architectures, 2 Tier and 3 Tier Architecture,

Introduction to Parallel Databases, Key elements of Parallel Database Processing, Architecture of

Parallel Databases, Introduction to Distributed Databases,

Architecture of Distributed Databases,

Distributed Database Design.

Emerging Database Technologies: Introduction, No SQL Databases-Internet Databases, Cloud

databases, Mobile Databases, SQLite database, XML databases

Software Engineering

Software Engineering

Introduction To Software Engineering

Software Engineering Fundamentals: Nature of Software, Software Engineering Practice,

Software Process, Software Myths.

Process Models: A Generic Process Model, Linear Sequential

Development Model, Iterative

Development Model, The incremental Development Model

Agile software development: Agile manifesto, agility principles, Agile methods, myth of planned

development, Introduction to Extreme programming and Scrum.

Agile Practices: test driven development, pair programming, continuous integration in DevOps,

Refactoring

Requirements Engineering & Analysis

Requirements Engineering: User and system requirements,

Functional and non-functional

requirements, requirements engineering (elicitation, specification, validation, negotiation)

prioritizing requirements (Kano diagram), requirement traceability matrix(RTM)

Software Requirements Specification (SRS): software requirements Specification document,

structure of SRS, writing a SRS, structured SRS for online shopping, Requirements Analysis: Analysis Model, data modeling, scenario based modeling, class based

modeling, Flow oriented modeling, behavioral modeling-Introduction to UML diagrams

Design Engineering

Design Engineering : Design Process & quality, Design Concepts, design Model, Pattern-based

Software Design. Architectural Design :Design Decisions, Views,

Patterns, Application

Architectures,

Component level Design: component, Designing class based

components, conducting component-level design, User Interface Design: The golden rules, Interface Design steps& Analysis, Design Evaluation

Project Planning, Management And Estimation

Project Planning: Project initiation, Planning Scope Management, Creating the Work Breakdown

Structure, scheduling: Importance of Project Schedules, Developing the Schedule using Gantt

Charts, PERT/CPM

Project Management: The Management Spectrum, People, Product, Process, Project, The W5HH

Principle, Metrics in the Process and Project Domains, Software Measurement: size &function-oriented metrics(FP & LOC), Metrics for Project

Project Estimation: Software Project Estimation, Decomposition Techniques, Cost Estimation
Tools and Techniques, Typical Problems with IT Cost Estimates.

Software Quality And Testing

Quality Concepts: Quality, software quality, Quality Metrics, software quality dilemma, achieving

software quality

Software Testing: Introduction to Software Testing, Principles of Testing, Test plan, Test case,

Types of Testing, Verification & Validation, Testing strategies, Defect Management, Defect Life

Cycle, Bug Reporting, debugging.

Formal Methods Recent Trends In Software Engineering

Recent Trends in SE: SCM, Risk Management, Technology evolution, process trends, collaborative

development, software reuse, test-driven development, global software development challenges,

CASE - taxonomy, tool-kits, workbenches, environments, components of CASE, categories (upper,

lower and integrated CASE tools), Introduction to agile tools Jira, Kanban

Engineering Mathematics-III

Engineering Mathematics- III

Unit I Linear Differential Equations

LDE of nth order with constant coefficients, Complementary function, Particular integral, General

method, Short methods, Method of variation of parameters, Cauchy's & Legendre's DE,

Simultaneous & Symmetric simultaneous DE.

Unit II Transforms

Fourier Transform (FT): Complex exponential form of Fourier series, Fourier integral theorem,

Fourier Sine & Cosine integrals, Fourier transform, Fourier Sine & Cosine transforms and their

inverses, Discrete Fourier Transform.

Z -Transform(ZT):Introduction, Definition, Standard properties, ZT of standard sequences and their

inverses. Solution of difference equations.

Unit III Statistics

Measures of central tendency, Measures of dispersion, Coefficient of variation, Moments,

Skewness and Kurtosis, Curve fitting: fitting of straight line, parabola and related curves,

Correlation and Regression, Reliability of Regression Estimates.

Unit IV Probability and Probability Distributions

Probability, Theorems on Probability, Bayes theorem, Random variables, Mathematical

Expectation, Probability density function, Probability distributions:

Binomial, Poisson, Normal and

Hyper geometric, Sampling distributions, Test of Hypothesis: Chi-Square test, t-test.

Unit V Numerical Methods

Numerical Solution of Algebraic and Transcendental equations: Bisection, Secant, Regula-Falsi,

Newton-Raphson and Successive Approximation Methods,

Convergence and Stability.

Numerical Solutions of System of linear equations: Gauss elimination, LU Decomposition, Cholesky,

Jacobi and Gauss-Seidel Methods.

Unit VI Numerical Methods

Interpolation: Finite Differences, Newton's and Lagrange's Interpolation formulae, Numerical

Differentiation. Numerical Integration: Trapezoidal and Simpson's rules, Bound of truncation error.

Solution of Ordinary differential equations: Euler's, Modified Euler's, Runge-Kutta 4th order

methods and Predictor-Corrector methods

Visit www.goseeko.com to access free study material as per your university syllabus