
Aryabhatta	Knowledge	University	(AKU)

Electronics	and	Communications	Engineering

Object	Oriented	Programming

Solved	Exam	Paper	2019

	

Question.	What	 is	object	oriented	programming	(OOP)?	Write
the	basic	concept	of	OOP.

Answer:	 Object-oriented	 programming	 (OOP)	 is	 a	 computer
programming	model	 that	organizes	 software	design	around	data,	or
objects,	rather	than	functions	and	logic.	An	object	can	be	defined	as	a
data	field	that	has	unique	attributes	and	behavior.

OOP	 focuses	 on	 the	 objects	 that	 developers	 want	 to	 manipulate
rather	than	the	logic	required	to	manipulate	them.	This	approach	to
programming	is	well-suited	for	programs	that	are	large,	complex	and
actively	updated	or	maintained.

The	 organization	 of	 an	 object-oriented	 program	 also	 makes	 the
method	 beneficial	 to	 collaborative	 development,	 where	 projects	 are
divided	into	groups.

Additional	 benefits	 of	 OOP	 include	 code	 reusability,	 scalability	 and
efficiency.	 Even	 when	 using	 micro	 services,	 developers	 should
continue	to	apply	the	principles	of	OOP.

The	 first	 step	 in	 OOP	 is	 to	 collect	 all	 of	 the	 objects	 a	 programmer
wants	to	manipulate	and	identify	how	they	relate	to	each	other	--	an

exercise	often	known	as	data	modeling.

Examples	 of	 an	 object	 can	 range	 from	 physical	 entities,	 such	 as	 a
human	being	who	is	described	by	properties	 like	name	and	address,
down	to	small	computer	programs,	such	as	widgets.

Once	 an	 object	 is	 known,	 it	 is	 labeled	 with	 a	 class	 of	 objects	 that
defines	the	kind	of	data	it	contains	and	any	logic	sequences	that	can
manipulate	 it.	 Each	 distinct	 logic	 sequence	 is	 known	 as	 a	 method.
Objects	 can	 communicate	 with	 well-defined	 interfaces	 called
messages.

Principles	of	OOP

Object-oriented	programming	is	based	on	the	following	principles:

Encapsulation.	 The	 implementation	 and	 state	 of	 each	 object	 are
privately	 held	 inside	 a	 defined	 boundary,	 or	 class.	 Other	 objects	 do
not	have	access	to	this	class	or	the	authority	to	make	changes	but	are
only	 able	 to	 call	 a	 list	 of	 public	 functions,	 or	 methods.	 This
characteristic	 of	 data	hiding	provides	greater	 program	 security	 and
avoids	unintended	data	corruption.

Abstraction.	 Objects	 only	 reveal	 internal	 mechanisms	 that	 are
relevant	 for	 the	 use	 of	 other	 objects,	 hiding	 any	 unnecessary
implementation	 code.	 This	 concept	 helps	 developers	 more	 easily
make	changes	and	additions	over	time.

Inheritance.	 Relationships	 and	 subclasses	 between	 objects	 can	 be
assigned,	 allowing	 developers	 to	 reuse	 a	 common	 logic	 while	 still
maintaining	a	unique	hierarchy.	This	property	of	OOP	forces	a	more
thorough	 data	 analysis,	 reduces	 development	 time	 and	 ensures	 a
higher	level	of	accuracy.

Polymorphism.	Objects	can	take	on	more	than	one	form	depending
on	the	context.	The	program	will	determine	which	meaning	or	usage
is	necessary	for	each	execution	of	that	object,	cutting	down	the	need

to	duplicate	code.

●						OOP	models	complex	things	as	reproducible,	simple	structures

●						Reusable,	OOP	objects	can	be	used	across	programs

●						Allows	for	class-specific	behavior	through	polymorphism

●	 	 	 	 	 	Easier	to	debug,	classes	often	contain	all	applicable	information
to	them

●						Secure,	protects	information	through	encapsulation

Question.	What	do	you	mean	by	class	and	object?

Answer:	Classes	are	essentially	user	defined	data	types.	Classes	are
where	 we	 create	 a	 blueprint	 for	 the	 structure	 of	 methods	 and
attributes.	 Individual	 objects	 are	 instantiated,	 or	 created	 from	 this
blueprint.

Classes	 contain	 fields	 for	 attributes,	 and	methods	 for	 behaviors.	 In
our	 Dog	 class	 example,	 attributes	 include	 name	 &	 birthday,	 while
methods	include	bark()	and	update	Attendance().

Remember	the	class	is	a	template	for	modeling	a	dog,	and	an	object
is	 instantiated	 from	 the	 class	 representing	 an	 individual	 real	 world
thing.

Objects

Of	 course	 OOP	 includes	 objects!	 Objects	 are	 instances	 of	 classes
created	 with	 specific	 data,	 for	 example	 in	 the	 code	 snippet	 below
Rufus	is	an	instance	of	the	Dog	class.

When	the	new	class	Dog	is	called:

A	new	object	is	created	named	rufus

The	constructor	runs	name	&	birthday	arguments,	and	assigns	values

	

N/A What	 is
it?

Information
Contained

Actions Example

Classes Blueprint Attributes Behaviors
defined	 through
methods

Dog
Template

Objects Instance State,	Data Methods Rufus,
Fluffy

	

Question.	With	an	example,	explain	the	terms	constructor	and
destructor

Constructor:

Answer:	A	constructor	 is	a	member	 function	of	a	class	 that	has	 the
same	 name	 as	 the	 class	 name.	 It	 helps	 to	 initialize	 the	 object	 of	 a
class.	It	can	either	accept	the	arguments	or	not.	It	is	used	to	allocate
the	 memory	 to	 an	 object	 of	 the	 class.	 It	 is	 called	 whenever	 an
instance	 of	 the	 class	 is	 created.	 It	 can	 be	 defined	 manually	 with
arguments	or	without	arguments.	There	can	be	many	constructors	in
class.	It	can	be	overloaded	but	it	cannot	be	inherited	or	virtual.	There
is	a	concept	of	copy	constructor	which	is	used	to	initialize	an	object
from	another	object.

Syntax:

		ClassName()

			{

					//Constructor's	Body

			}

Destructor:

Like	constructor,	deconstructor	 is	also	a	member	 function	of	a	class
that	 has	 the	 same	 name	 as	 the	 class	 name	 preceded	 by	 a	 tilde	 (~)
operator.	 It	helps	 to	deallocate	 the	memory	of	an	object.	 It	 is	called
while	 the	object	of	 the	class	 is	 freed	or	deleted.	 In	a	 class,	 there	 is
always	 a	 single	 destructor	 without	 any	 parameters	 so	 it	 can’t	 be
overloaded.	It	is	always	called	in	the	reverse	order	of	the	constructor.
if	 a	 class	 is	 inherited	 by	 another	 class	 and	 both	 the	 classes	 have	 a
destructor	 then	 the	 destructor	 of	 the	 child	 class	 is	 called	 first,
followed	by	the	destructor	of	the	parent	or	base	class.

Syntax:

		~ClassName()

			{

			}

Note:	 If	 we	 do	 not	 specify	 any	 access	 modifiers	 for	 the	 members
inside	the	class	then	by	default	the	access	modifier	for	the	members
will	be	Private.

Question.	With	an	example,	explain	what	virtual	function	is?

Answer:	A	 virtual	 function	 is	 a	member	 function	which	 is	 declared
within	a	base	class	and	 is	re-defined	 (Overriden)	by	a	derived	class.
When	 you	 refer	 to	 a	 derived	 class	 object	 using	 a	 pointer	 or	 a
reference	 to	 the	 base	 class,	 you	 can	 call	 a	 virtual	 function	 for	 that
object	and	execute	the	derived	class’s	version	of	the	function.

Virtual	 functions	 ensure	 that	 the	 correct	 function	 is	 called	 for	 an
object,	 regardless	 of	 the	 type	 of	 reference	 (or	 pointer)	 used	 for
function	call.

They	are	mainly	used	to	achieve	Runtime	polymorphism

Functions	are	declared	with	a	virtual	keyword	in	base	class.

The	resolving	of	function	calls	is	done	at	Run-time.

Rules	for	Virtual	Functions

Virtual	functions	cannot	be	static.

A	virtual	function	can	be	a	friend	function	of	another	class.

Virtual	 functions	 should	 be	 accessed	 using	 pointer	 or	 reference	 of
base	class	type	to	achieve	runtime	polymorphism.

The	prototype	of	virtual	functions	should	be	the	same	in	the	base	as
well	as	derived	class.

They	are	always	defined	in	the	base	class	and	overridden	in	a	derived
class.	 It	 is	 not	 mandatory	 for	 the	 derived	 class	 to	 override	 (or	 re-
define	the	virtual	function),	in	that	case,	the	base	class	version	of	the
function	is	used.

A	 class	 may	 have	 a	 virtual	 destructor	 but	 it	 cannot	 have	 a	 virtual
constructor.

Question.	What	do	you	mean	by	polymorphism?

Answer:	 	Polymorphism	 is	 an	 important	 concept	 of	 object-oriented
programming.	It	simply	means	more	than	one	form.	That	is,	the	same
entity	 (function	 or	 operator)	 behaves	 differently	 in	 different
scenarios.	For	example,

The	 +	 operator	 in	 C++	 is	 used	 to	 perform	 two	 specific	 functions.

When	it	is	used	with	numbers	(integers	and	floating-point	numbers),
it	performs	addition.

int	a	=	5;

int	b	=	6;

int	sum	=	a	+	b;				//	sum	=	11

And	when	we	 use	 the	 +	 operator	 with	 strings,	 it	 performs	 string
concatenation.	For	example,

string	firstName	=	"abc	";

string	lastName	=	"xyz";

	

//	name	=	"abc	xyz"

string	name	=	firstName	+	lastName;

	

	

Compile	time	polymorphism:	The	overloaded	functions	are	invoked

by	matching	the	 type	and	number	of	arguments.	This	 information	 is
available	at	the	compile	time	and,	therefore,	the	compiler	selects	the
appropriate	 function	 at	 the	 compile	 time.	 It	 is	 achieved	 by	 function
overloading	 and	 operator	 overloading	which	 is	 also	 known	as	 static
binding	or	early	binding.	Now,	let's	consider	the	case	where	function
name	and	prototype	are	the	same.

Runtime	polymorphism:	Run	time	polymorphism	is	achieved	when
the	 object's	 method	 is	 invoked	 at	 the	 run	 time	 instead	 of	 compile
time.	 It	 is	 achieved	 by	 method	 overriding	 which	 is	 also	 known	 as
dynamic	binding	or	late	binding.

We	can	implement	polymorphism	in	C++	using	the	following	ways:
1.	 Function	overloading
2.	 Operator	overloading
3.	 Function	overriding
4.	 Virtual	functions

Question.	With	an	example,	differentiate	between	run-time	and
compile-time	polymorphism.

Answer:

	

Compile	time	polymorphism Runtime	polymorphism

The	function	to	be	invoked	is	known	at
the	compile	time.

The	 function	 to	 be	 invoked	 is
known	at	the	run	time.

It	 is	 also	 known	 as	 overloading,	 early
binding	and	static	binding.

It	 is	 also	 known	 as	 overriding,
Dynamic	 binding	 and	 late
binding.

Overloading	 is	 a	 compile	 time
polymorphism	 where	 more	 than	 one
method	 is	 having	 the	 same	 name	 but
with	 the	 different	 number	 of
parameters	 or	 the	 type	 of	 the
parameters.

Overriding	 is	 a	 run	 time
polymorphism	 where	 more	 than
one	 method	 is	 having	 the	 same
name,	number	of	parameters	and
the	type	of	the	parameters.

It	 is	 achieved	 by	 function	 overloading
and	operator	overloading.

It	is	achieved	by	virtual	functions
and	pointers.

It	 provides	 fast	 execution	 as	 it	 is
known	at	the	compile	time.

It	provides	slow	execution	as	it	is
known	at	the	run	time.

It	 is	 less	 flexible	 as	 mainly	 all	 the
things	execute	at	the	compile	time.

It	 is	 more	 flexible	 as	 all	 the
things	execute	at	the	run	time.

Question.	What	is	a	friend	function?

Answer:	A	 friend	 function	 of	 a	 class	 is	 defined	 outside	 that	 class'
scope	but	it	has	the	right	to	access	all	private	and	protected	members
of	 the	class.	Even	though	the	prototypes	 for	 friend	functions	appear
in	the	class	definition,	friends	are	not	member	functions.

A	friend	can	be	a	function,	function	template,	or	member	function,	or
a	class	or	class	template,	in	which	case	the	entire	class	and	all	of	its
members	are	friends.

	

To	 declare	 a	 function	 as	 a	 friend	 of	 a	 class,	 precede	 the	 function
prototype	in	the	class	definition	with	keyword	friend	as	follows	−

class	Box	{

			double	width;

	

			public:

						double	length;

						friend	void	printWidth(Box	box);

						void	setWidth(double	wid);

};

	

	

Question.	 What	 is	 virtual	 function	 and	 rules	 for	 virtual
function?

Answer:	A	 C++	 virtual	 function	 is	 a	 member	 function	 in	 the	 base
class	 that	 you	 redefine	 in	 a	 derived	 class.	 It	 is	 declared	 using	 the
virtual	keyword.

It	 is	 used	 to	 tell	 the	 compiler	 to	 perform	 dynamic	 linkage	 or	 late
binding	on	the	function.

There	is	a	necessity	to	use	the	single	pointer	to	refer	to	all	the	objects
of	 the	different	 classes.	 So,	we	 create	 the	pointer	 to	 the	base	 class
that	refers	to	all	the	derived	objects.	But,	when	the	base	class	pointer
contains	 the	 address	 of	 the	 derived	 class	 object,	 it	 always	 executes
the	base	class	function.	This	issue	can	only	be	resolved	by	using	the
'virtual'	function.

A	 'virtual'	 is	 a	 keyword	 preceding	 the	 normal	 declaration	 of	 a
function.

	

When	the	function	is	made	virtual,	C++	determines	which	function	is
to	be	invoked	at	the	runtime	based	on	the	type	of	the	object	pointed
by	the	base	class	pointer.

Rules	of	Virtual	Function

Virtual	functions	must	be	members	of	some	class.

Virtual	functions	cannot	be	static	members.

They	are	accessed	through	object	pointers.

They	can	be	a	friend	of	another	class.

A	virtual	function	must	be	defined	in	the	base	class,	even	though	it	is
not	used.

The	 prototypes	 of	 a	 virtual	 function	 of	 the	 base	 class	 and	 all	 the
derived	classes	must	be	identical.	If	the	two	functions	with	the	same
name	 but	 different	 prototypes,	 C++	 will	 consider	 them	 as	 the
overloaded	functions.

We	 cannot	 have	 a	 virtual	 constructor,	 but	 we	 can	 have	 a	 virtual
destructor

Consider	the	situation	when	we	don't	use	the	virtual	keyword.

Question.	What	is	abstract	class?	Write	a	program	to	illustrate.
Also	outline	the	advantages	of	abstract	class

Answer:	An	abstract	class	is	a	class	in	C++	which	have	at	least	one
pure	virtual	function.

Abstract	class	can	have	normal	functions	and	variables	along	with	a
pure	virtual	function.

Abstract	class	cannot	be	instantiated,	but	pointers	and	references	of
Abstract	class	type	can	be	created.

Abstract	 classes	 are	mainly	 used	 for	 Upcasting,	 so	 that	 its	 derived
classes	can	use	its	interface.

If	an	Abstract	Class	has	derived	class,	they	must	implement	all	pure
virtual	functions,	or	else	they	will	become	Abstract	too.

We	can’t	create	an	object	of	abstract	class	as	we	reserve	a	slot	for	a
pure	 virtual	 function	 in	 Vtable,	 but	 we	 don’t	 put	 any	 address,	 so
Vtable	will	remain	incomplete.

//Abstract	base	class

class	Base									

{	

				public:

				virtual	void	show()	=	0;				//	Pure	Virtual	Function

};

	

class	Derived:public	Base

{

				public:

				void	show()

				{

	 	 	 	 	 	 	 	 cout	 <<	 "Implementation	 of	 Virtual	 Function	 in	 Derived
class\n";

				}

};

	

int	main()

{

				Base	obj;			//Compile	Time	Error

				Base	*b;

				Derived	d;

				b	=	&d;

				b->show();

}

	

	

OUTPUT:

Implementation	of	Virtual	Function	in	Derived	class

	

In	the	above	example	Base	class	is	abstract,	with	pure	virtual	show	()
function,	hence	we	cannot	create	objects	of	base	class.

Question.	Differentiate	between	abstract	class	and	interface

Answer:

Abstract	class Interface

1)	 Abstract	 class	 can	 have
abstract	 and	 non-abstract

Interface	 can	 have	 only	 abstract
methods.	 Since	 Java	 8,	 it	 can	 have

methods. default	and	static	methods	also.

2)	Abstract	 class	 doesn't	 support
multiple	inheritance.

Interface	 supports	 multiple
inheritance.

3)	 Abstract	 class	 can	 have	 final,
non-final,	 static	 and	 non-static
variables.

Interface	 has	 only	 static	 and	 final
variables.

4)	Abstract	class	can	provide	the
implementation	of	interfaces.

Interface	 can't	 provide	 the
implementation	of	abstract	class.

5)	 The	 abstract	 keyword	 is	 used
to	declare	abstract	class.

The	 interface	 keyword	 is	 used	 to
declare	an	interface.

6)	 An	 abstract	 class	 can	 extend
another	Java	class	and	implement
multiple	Java	interfaces.

An	 interface	 can	 extend	 another	 Java
interface	only.

7)	 An	 abstract	 class	 can	 be
extended	 using	 the	 keyword
"extends".

An	 interface	 can	 be	 implemented
using	keyword	"implements".

8)	A	Java	abstract	class	can	have
class	 members	 like	 private,
protected,	etc.

Members	of	a	Java	interface	are	public
by	default.

9)Example:

public	abstract	class	Shape{

public	abstract	void	draw();

Example:

public	interface	Drawable{

void	draw();

} }

	

Question.	 What	 is	 an	 exception?	 What	 do	 you	 mean	 by
exception	handling?

Answer:	An	exception	 is	a	problem	that	arises	during	the	execution
of	 a	 program.	 A	 C++	 exception	 is	 a	 response	 to	 an	 exceptional
circumstance	 that	 arises	 while	 a	 program	 is	 running,	 such	 as	 an
attempt	to	divide	by	zero.

Exceptions	 provide	 a	 way	 to	 transfer	 control	 from	 one	 part	 of	 a
program	 to	 another.	 C++	 exception	 handling	 is	 built	 upon	 three
keywords:	try,	catch,	and	throw.

throw	−	A	program	throws	an	exception	when	a	problem	shows	up.
This	is	done	using	a	throw	keyword.

catch	−	A	program	catches	an	exception	with	an	exception	handler	at
the	place	 in	a	program	where	you	want	 to	handle	 the	problem.	The
catch	keyword	indicates	the	catching	of	an	exception.

try	 −	 A	 try	 block	 identifies	 a	 block	 of	 code	 for	 which	 particular
exceptions	 will	 be	 activated.	 It's	 followed	 by	 one	 or	 more	 catch
blocks.

Assuming	 a	 block	 will	 raise	 an	 exception,	 a	 method	 catches	 an
exception	 using	 a	 combination	 of	 the	 try	 and	 catch	 keywords.	 A
try/catch	 block	 is	 placed	 around	 the	 code	 that	 might	 generate	 an
exception.	Code	within	 a	 try/catch	block	 is	 referred	 to	 as	 protected
code,	and	the	syntax	for	using	try/catch	as	follows	−

try	{

			//	protected	code

}	catch(ExceptionName	e1)	{

			//	catch	block

}	catch(ExceptionName	e2)	{

			//	catch	block

}	catch(ExceptionName	eN)	{

			//	catch	block

}

	

Question.	With	 the	help	of	an	example	program,	 	differentiate
between	the	following:	a)	overloading	vs	overriding

Answer:

1)	Function	Overloading	happens	in	the	same	class	when	we	declare
same	functions	with	different	arguments	in	the	same	class.	Function
Overriding	 is	 happens	 in	 the	 child	 class	when	 child	 class	 overrides
parent	class	function.

2)	 In	 function	overloading	 function	signature	should	be	different	 for
all	 the	 overloaded	 functions.	 In	 function	overriding	 the	 signature	 of
both	 the	 functions	 (overriding	 function	 and	 overridden	 function)
should	be	same.

3)	 Overloading	 happens	 at	 the	 compile	 time	 thats	 why	 it	 is	 also
known	 as	 compile	 time	 polymorphism	 while	 overriding	 happens	 at
run	time	which	is	why	it	is	known	as	run	time	polymorphism.

4)	 In	 function	 overloading	 we	 can	 have	 any	 number	 of	 overloaded
functions.	 In	 function	 overriding	 we	 can	 have	 only	 one	 overriding

function	in	the	child	class.

b)	Early	binding	vs	Late	binding

In	 early	 binding,	 the	 compiler	 matches	 the	 function	 call	 with	 the
correct	function	definition	at	compile	time.	It	is	also	known	as	Static
Binding	or	Compile-time	Binding.	By	default,	the	compiler	goes	to
the	function	definition	which	has	been	called	during	compile	time.	So,
all	 the	 function	 calls	 you	 have	 studied	 till	 now	 are	 due	 to	 early
binding.

You	 have	 learned	 about	 function	 overriding	 in	 which	 the	 base	 and
derived	classes	have	functions	with	the	same	name,	parameters	and
return	type.	In	that	case	also,	early	binding	takes	place.

In	function	overriding,	we	called	the	function	with	the	objects	of	the
classes.	Now	let's	try	to	write	the	same	example	but	this	time	calling
the	 functions	with	 the	pointer	 to	 the	base	class	 i.e.,	 refernce	 to	 the
base	class'	object.

#include	<iostream>

	

using	namespace	std;

	

class	Animals

{

	 public:

	 	 void	sound()

	 	 {

	 	 	 cout	<<	"This	is	parent	class"	<<	endl;

	 	 }

};

	

class	Dogs	:	public	Animals

{

	 public:

	 	 void	sound()

	 	 {

	 	 	 cout	<<	"Dogs	bark"	<<	endl;

	 	 }

};

	

int	main()

{

	 Animals	*a;

	 Dogs	d;

	 a=	&d;

	 a	->	sound();			//		early	binding

	 return	0;

}

	

Output:		This	is	a	parent	class

Now	 in	 this	 example,	 we	 created	 a	 pointer	 a	 to	 the	 parent	 class
Animals.	Then	by	writing	a=	&d	,	the	pointer	 'a'	started	referring	to
the	object	d	of	the	class	Dogs.

a	 ->	 sound();	 -	 On	 calling	 the	 function	 sound()	 which	 is	 present	 in
both	the	classes	by	the	pointer	'a',	the	function	of	the	parent	class	got
called,	even	if	the	pointer	is	referring	to	the	object	of	the	class	Dogs.

This	is	due	to	Early	Binding.	We	know	that	a	is	a	pointer	of	the	parent
class	 referring	 to	 the	 object	 of	 the	 child	 class.	 Since	 early	 binding
takes	place	at	compile-time,	therefore	when	the	compiler	saw	that	a
is	a	pointer	of	the	parent	class,	it	matched	the	call	with	the	‘sound	()'
function	 of	 the	 parent	 class	 without	 considering	 which	 object	 the
pointer	is	referring	to.

Late	Binding

In	 the	 case	 of	 late	 binding,	 the	 compiler	 matches	 the	 function	 call
with	 the	 correct	 function	 definition	 at	 runtime.	 It	 is	 also	 known	 as
Dynamic	Binding	or	Runtime	Binding.

In	 late	binding,	 the	compiler	 identifies	 the	type	of	object	at	runtime
and	 then	 matches	 the	 function	 call	 with	 the	 correct	 function
definition.

By	default,	early	binding	takes	place.	So	if	by	any	means	we	tell	the
compiler	 to	 perform	 late	 binding,	 then	 the	 problem	 in	 the	 above
example	can	be	solved.

This	can	be	achieved	by	declaring	a	virtual	function.

Visit	www.goseeko.com	to	access	free	study	material	as	per	your	university	syllabus

